Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki earthquake: Roles of a possible subducting seamount

نویسنده

  • Benchun Duan
چکیده

[1] Using a hybrid MPI/OpenMP parallel finite element method for spontaneous rupture and seismic wave propagation simulations, we investigate features in rupture propagation, slip distribution, seismic radiation, and seafloor deformation of the 2011 Mw 9.0 Tohoku-Oki earthquake to gain physical insights into the event. With simplified shallow dipping (10 ) planar fault geometry, 1D velocity structure, and a slip-weakening friction law, we primarily investigate initial stress and strength conditions that can produce rupture and seismic radiation characteristics of the event revealed by kinematic inversions, and seafloor displacements observed near the epicenter. By a large suite of numerical experiments aided by parallel computing on modern supercomputers, we find that a seamount of a dimension of 70 km by 23 km just updip of the hypocenter on the subducting plane, parameterized by higher static friction, lower pore fluid pressure, and higher initial stress than surrounding regions, may play a dominant role in the 2011 event. Its high strength stalls updip rupture for tens of seconds, and its high stress drop generates large slip. Its failure drives the rupture to propagate into the shallow portion that is likely velocity-strengthening, resulting in significant slip near the trench within a limited area. However, the preferred model suggests that the largest slip in the event occurs near the hypocenter. High-strength patches along the downdip portion of the subducting plane are most effective among several possible factors in generating high-frequency seismic radiations, suggesting the initial strength distribution there is very heterogeneous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural heterogeneity in the megathrust zone and mechanism

[1] The great 2011 Tohoku‐oki earthquake (Mw 9.0) and its 339 foreshocks and 5,609 aftershocks (9–27 March 2011) were relocated using a three‐dimensional seismic velocity model and local P and S wave arrival times. The distribution of relocated hypocenters was compared with a tomographic image of the Northeast Japan forearc. The comparison indicates that the rupture nucleation of the largest ev...

متن کامل

Low friction along the high slip patch of the 2011 Mw 9.0 Tohoku-Oki earthquake required from the wedge structure and extensional splay faults

[1] We analyze the mechanical properties needed to account for the large shallow slip during the 2011 Tohoku-Oki earthquake and the activation of landward normal faulting within the forearc. We show that the morphology and internal structure of the forearc follows closely the prediction of the critical Coulomb wedge in horizontal compression, implying a high internal pore pressure ratio ( = 0.7...

متن کامل

Early magnitude and potential damage zone estimates for the great Mw 9 Tohoku-Oki earthquake

[1] The Mw 9.0, 2011 Tohoku-Oki earthquake has reopened the discussion among the scientific community about the effectiveness of earthquake early warning for large events. A well-known problem with real-time procedures is the parameter saturation, which may lead to magnitude underestimation for large earthquakes. Here we measure the initial peak ground displacement and the predominant period by...

متن کامل

Fukushima nuclear power plant area

High-resolution tomographic images of the crust and upper mantle in and around the area of the 2011 Iwaki earthquake (M 7.0) and the Fukushima nuclear power plant are determined by inverting a large number of high-quality arrival times with both the finite-frequency and ray tomography methods. The Iwaki earthquake and its aftershocks mainly occurred in a boundary zone with strong variations in ...

متن کامل

Compressive sensing of the Tohoku‐Oki Mw 9.0 earthquake: Frequency‐dependent rupture modes

[1] Compressive sensing (CS) is a technique for finding sparse signal representations to underdetermined linear measurement equations. We use CS to locate seismic sources during the rupture of the 2011 Tohoku‐Oki Mw9.0 earthquake in Japan from teleseismic P waves recorded by an array of stations in the United States. The seismic sources are located by minimizing the ‘2‐norm of the difference be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012